

Data sheet

Evaporating Pressure Regulator Type KVP

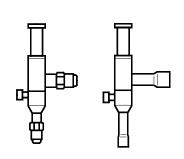
Features

- Accurate, adjustable pressure regulation
- Wide capacity and operating range
- Pulsation damping design
- Stainless steel bellows
- Compact angle design for easy installation in any position
- "Hermetic" brazed construction
- 1/4 in. Schrader valve for pressure testing
- Available with flare and ODF solder connections
- For use with HCFC and non-flammable HFC refrigerants

Approvals

UL LISTED, file SA7200

Data sheet


Evaporating Pressure Regulator, type KVP

Technical data

Refrigerants	HCFC and non-flammable HFC
	0 – 5.5 bar
Regulating range	Factory setting = 2 bar
Maximum working pressure	PS/MWP PS = 18 bar
Maximum test pressure	Pe = PS × 1.1 = 19.8 bar
Aedium temperature range	-45 – 130 °C
Maximum P-band	KVP 12 – 22: 1.7 bar
Maximum P-band	KVP 28 – 35: 2.8 bar
k using limits effect 0.6 her	KVP 12 – 22: 1.7 m³/h
k_v -value ¹⁾ with offset 0.6 bar	KVP 28 – 35: 2.8 m³/h
	KVP 12 – 22: 2.5 m³/h
k_v -value ¹⁾ with maximum P-band	KVP 28 – 35: 8.0 m³/h

 $^{1)}$ The k_{ν} value is the flow of water in $[m^{3}/h]$ at a pressure drop across value of 1 bar, ρ = 1000 kg/m³.

Ordering

Туре		Rateo	l capacity ¹⁾ [kW]			are ection ²⁾	Code no.		lder ection	Code no.
	R22	R134a	R404A/R507	R407C	[in.]	[mm]		[in.]	[mm]	
KVP 12	4.0	2.8	3.6	3.7	1/2	12	034L0021	1/2	_	034L0023
KVP 12	4.0	2.8	3.6	3.7	_	_	_	_	12	034L0028
KVP 15	4.0	2.8	3.6	3.7	⁵ / ₈	16	034L0022	⁵ / ₈	16	034L0029
KVP 22	4.0	2.8	3.6	3.7	_	_	_	7/8	22	034L0025
1/1/17 2.0	8.6	6.1	7.7	7.9	—	_	—	1 ¹ / ₈	_	034L0026
KVP 28	8.6	6.1	7.7	7.9	_	_	_	_	28	034L0031
KVP 35	8.6	6.1	7.7	7.9	_	_		1 ³ / ₈	35	034L0032

 $^{1)}$ Rated capacity is the capacity of the regulator at evaporating temperature $t_e=-10$ °C, condensing temperature $t_c=25$ °C, pressure drop in regulator $\Delta p=0.2$ bar, offset = 0.6 bar.

 21 KVP supplied without flare nuts. Separate flare nuts can be supplied: $^{1}/_2$ in. / 12 mm, code no. 011L1103, $^{5}/_8$ in. / 16 mm, code no. 011L1167.

The connection dimensions chosen must not be too small, since gas velocities in excess of 40 m/s at the inlet of the regulator can give flow noise.

Capacity

Regulator capacity $Q_e^{(1)}[kW]$ with offset = 0.6 bar

Туре	Pressure drop in regulator Δp								
	[bar]	-30	-25	-20	-15	-10	-5	0	5
R22									
	0.1	1.9	2.1	2.3	2.6	2.9	3.2	3.5	3.8
	0.2	2.5	2.9	3.2	3.6	4.0	4.4	4.9	5.3
KVP 12 KVP 15	0.3	3.0	3.4	3.8	4.3	4.8	5.3	5.9	6.5
KVP 13 KVP 22	0.4	3.3	3.8	4.3	4.9	5.5	6.1	6.7	7.4
	0.5	3.4	4.1	4.7	5.3	6.0	6.7	7.4	8.2
	0.6	3.6	4.2	5.0	5.7	6.4	7.2	8.0	8.8
	0.1	4.0	4.5	5.0	5.6	6.2	6.8	7.5	8.2
	0.2	5.4	6.2	6.9	7.7	8.6	9.5	10.4	11.4
KVP 28	0.3	6.3	7.3	8.2	9.3	10.3	11.5	12.6	13.9
KVP 35	0.4	7.0	8.1	9.2	10.4	11.7	13.0	14.4	15.8
	0.5	7.4	8.7	10.0	11.4	12.8	14.3	15.9	17.5
	0.6	7.6	9.1	10.6	12.2	13.8	15.4	17.1	18.9

Regulator capacity Q_e^{1} [kW] with offset = 0.6 bar

Туре	Pressure drop in regulator Δp	Evaporating temperature t _e [°C]								
	[bar]	-15	-10	-5	0	5	10	15	20	
R134a										
	0.1	1.8	2.1	2.3	2.6	2.9	3.2	3.6	3.9	
	0.2	2.5	2.8	3.2	3.6	4.0	4.5	5.0	5.5	
KVP 12 KVP 15	0.3	2.9	3.4	3.8	4.3	4.9	5.4	6.0	6.6	
KVP 15 KVP 22	0.4	3.2	3.7	4.3	4.9	5.5	6.1	6.8	7.6	
	0.5	3.4	4.0	4.6	5.3	6.0	6.8	7.5	8.3	
	0.6	3.5	4.2	4.9	5.7	6.4	7.3	8.1	9.0	
	0.1	3.9	4.5	5.0	5.6	6.2	6.9	7.6	8.4	
	0.2	5.3	6.1	6.9	7.8	8.7	9.6	10.6	11.7	
KVP 28	0.3	6.3	7.2	8.2	9.3	10.4	11.6	12.9	14.2	
KVP 35	0.4	6.9	8.0	9.2	10.5	11.8	13.2	14.6	16.2	
	0.5	7.3	8.6	10.0	11.4	12.9	14.5	16.1	17.9	
	0.6	7.5	9.0	10.5	12.1	13.8	15.6	17.4	19.3	

 $^{\rm 1)}$ The capacities are based on liquid temperature ahead of expansion valve $t_{\rm l}=25~^{\circ}{\rm C}$ Regulator offset = 0.6 bar. Dry saturated gas ahead of regulator.

Correction factors for liquid temperature t_1

t _i [°C]	15	20	25	30	35	40
R22	0.93	0.96	1.0	1.04	1.08	1.13
R134a	0.92	0.96	1.0	1.05	1.10	1.16

Correction factors for offset

Offset [bar]	0.2	0.4	0.6	0.8	1.0	1.2	1.4
KVP 12	2.5	1.4	1.0	0.77	0.67	0.59	_
KVP 15	2.5	1.4	1.0	0.77	0.67	0.59	_
KVP 22	2.5	1.4	1.0	0.77	0.67	0.59	_
KVP 28	_	1.4	1.0	0.77	0.67	0.59	0.53
KVP 35	_	1.4	1.0	0.77	0.67	0.59	0.53

Danfoss

Danfoss

Evaporating Pressure Regulator, type KVP

Data sheet

Capacity (continued) Regulator capacity $Q_e^{(1)}$ [kW] with offset = 0.6 bar

Туре	Pressure drop in regulator Δp			Evapo	orating ter	nperature	t _e [°C]		
	[bar]	-35	-30	-25	-20	-15	-10	-5	0
R404A/F	R507								
	0.1	1.4	1.6	1.8	2.1	2.3	2.6	2.8	3.2
	0.2	1.9	2.2	2.5	2.8	3.2	3.6	4.0	4.4
KVP 12 KVP 15	0.3	2.2	2.5	3.0	3.5	3.9	4.4	4.8	5.4
KVP 13 KVP 22	0.4	2.4	2.9	3.3	3.9	4.3	4.9	5.5	6.2
	0.5	2.5	3.1	3.6	4.2	4.8	5.5	6.1	6.8
	0.6	2.6	3.2	3.9	4.4	5.1	5.8	6.5	7.4
	0.1	2.9	3.4	3.9	4.4	5.0	5.5	6.0	6.8
	0.2	4.0	4.7	5.4	6.2	6.8	7.7	8.4	9.6
KVP 28	0.3	4.7	5.5	6.4	7.3	8.2	9.2	10.3	11.6
KVP 35	0.4	5.1	6.1	7.2	8.2	9.3	10.5	11.7	13.2
	0.5	5.5	6.6	7.7	9.0	10.2	11.4	12.9	14.5
	0.6	5.7	6.9	8.2	9.6	10.9	12.4	13.8	15.7

Regulator capacity Q_e^{1} [kW] with offset = 0.6 bar

Туре	Pressure drop in regulator Δp			Evapo	orating ter	nperature	t _e [°C]		
	[bar]	-30	-25	-20	-15	-10	-5	0	5
R407C									
	0.1	1.6	1.8	2.0	2.3	2.7	3.0	3.3	3.6
	0.2	2.2	2.5	2.8	3.2	3.7	4.1	4.6	5.1
KVP 12 KVP 15	0.3	2.6	3.0	3.4	3.9	4.4	4.9	5.5	6.2
KVP 15 KVP 22	0.4	2.8	3.3	3.8	4.4	5.1	5.7	6.3	7.1
	0.5	2.9	3.6	4.2	4.8	5.5	6.2	7.0	7.9
	0.6	3.1	3.7	4.5	5.1	5.9	6.7	7.5	8.4
	0.1	3.4	3.9	4.5	5.0	5.7	6.3	7.1	7.9
	0.2	4.6	5.4	6.1	6.9	7.9	8.8	9.8	10.9
KVP 28	0.3	5.4	6.4	7.3	8.4	9.5	10.7	11.8	13.3
KVP 35	0.4	6.0	7.0	8.2	9.4	10.8	12.1	13.5	15.2
	0.5	6.4	7.6	8.9	10.3	11.8	13.3	14.9	16.8
	0.6	6.5	7.9	9.4	11.0	12.7	14.3	16.1	18.1

 $^{\rm D}$ The capacities are based on liquid temperature ahead of expansion valve t_i = 25 °C Regulator offset = 0.6 bar. Dry saturated gas ahead of regulator.

Correction factors for temperature t₁

t _i [°C]	15	20	25	30	35	40
R404A/R507	0.89	0.94	1.0	1.07	1.16	1.26
R407C	0.91	0.95	1.0	1.05	1.11	1.18

Correction factors for offset

Offset [bar]	0.2	0.4	0.6	0.8	1.0	1.2	1.4
KVP 12	2.5	1.4	1.0	0.77	0.67	0.59	
KVP 15	2.5	1.4	1.0	0.77	0.67	0.59	—
KVP 22	2.5	1.4	1.0	0.77	0.67	0.59	_
KVP 28	—	1.4	1.0	0.77	0.67	0.59	0.53
KVP 35	_	1.4	1.0	0.77	0.67	0.59	0.53

									7	antos	
Data sheet	Evaporating Pressur	e Regulat	tor, type	KVP					0-		
Sizing	 For optimum performance, it is important to select a KVP valve according to system conditions and applications. Refrigerant: HCFC and Non-flammable is Evaporator capacity: Q_e in [kW] Evaporating temperature (required temperature): t_e in [°C] Minimum evaporating temperature: t_e is Liquid temperature ahead of expansion valve: t₁ in [°C] Connection type: flare or solder Connection size in inches 						e HFC				
Valve selection	necessary to convert t capacity using a corre required when your sy different than the tabl The selection is also d	<i>Example</i> When selecting the appropiate valve it may be necessary to convert the actual evaporator capacity using a correction factor. This is required when your system conditions are different than the table conditions. The selection is also dependant on the acceptable pressure drop across the valve.				The following example illustrates how this is done. • Refrigerant: R134a • Evaporator capacity: $Q_e = 4.2 \text{ kW}$ • Evaporating temperature: $t_e = 5 \text{ °C} \sim 2.5 \text{ bar}$ • Minimum evaporating temperature: 1.4 °C ~ 2.1 bar • Liquid temperature ahead of expansion valve: $t_1 = 30 \text{ °C}$ • Connection type: Solder • Connection size: $\frac{5}{8}$ in.					
	Step 1 Determine the correct temperature t _i ahead o				a liqu		erature o		ole (see b 134a cor	,	
	Correction factors for li	quid temp	erature t _i		10 4 1		1.05.				
	t _i [°C]	10	15	20	25 30 35 40 45					50	
	R134a	0.88	0.92	0.96 1.0 1.05 1.10				1.16	1.23	1.31	
	R22	0.90	0.93	0.96	1.0	1.05	1.10	1.13	1.18	1.24	
	R404A/R507	0.84	0.89	0.94	1.0	1.07	1.16	1.26	1.40	1.57	
	R407C	0.88	0.91	0.95	1.0	1.05	1.11	1.18	1.26	1.35	

Step 2

Determine the correction factor for the valve offset.

The offset is defined as the difference between the design evaporating pressure and the

minimum evaporating pressure.

From the offset correction factor table, an offset of 0.4 bar (2.5 - 2.1) corresponds to a factor of 1.4.

Correction factors for offset

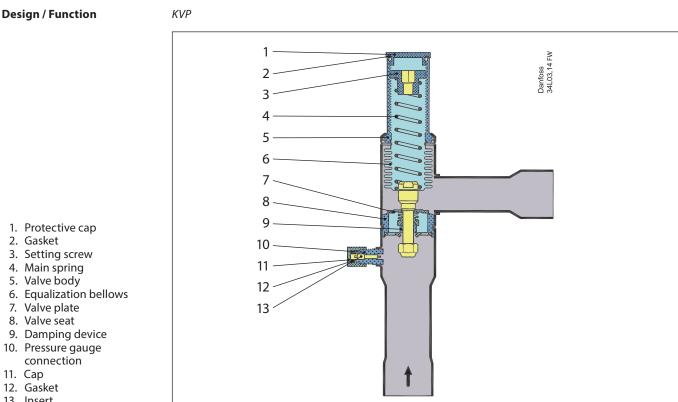
Offset [bar]	0.2	0.4	0.6	0.8	1.0	1.2	1.4
KVP 12	2.5	1.4	1.0	0.77	0.67	0.59	_
KVP 15	2.5	1.4	1.0	0.77	0.67	0.59	_
KVP 22	2.5	1.4	1.0	0.77	0.67	0.59	_
KVP 28	_	1.4	1.0	0.77	0.67	0.59	0.53
KVP 35		1.4	1.0	0.77	0.67	0.59	0.53

Step 3

Corrected evaporator capacity is $Q_{\rm e}{=}\,1.05{\times}\,1.4{\times}4.2{=}\,6.2$ kW

Step 4

Now select the appropriate capacity table (R134a) and choose the column for an evaporating temperature of $t_e = 5 \text{ °C}$.


Using the corrected evaporator capacity, select a valve that provides an equivalent or greater capacity at an acceptable pressure drop. KVP 12, KVP 15, KVP 22 delivers 6.4 kW at a 0.6 bar pressure drop across the valve.

KVP 28, KVP 35 delivers 6.2 kW at a 0.1 bar pressure drop across the valve.

Based on the required connection size of $\frac{5}{8}$ in., the KVP 15 is the proper selection for this example.

Step 5

KVP 15, $\frac{5}{8}$ in. solder connection: code no. 034L0029, see Ordering table.

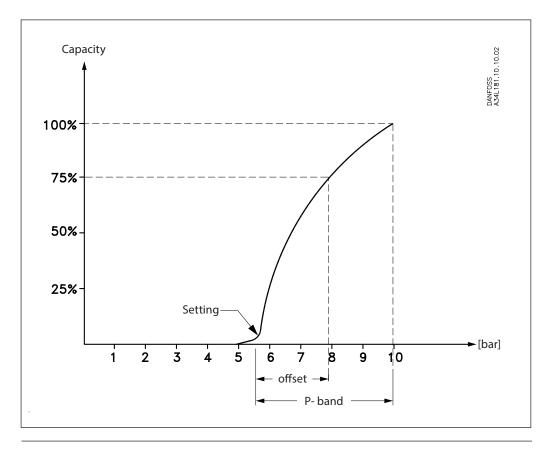
2. Gasket

- 3. Setting screw
- 4. Main spring
- 5. Valve body
- 6. Equalization bellows
- 7. Valve plate
- 8. Valve seat
- 9. Damping device
- 10. Pressure gauge connection
- 11. Cap
- 12. Gasket
- 13. Insert

Evaporator pressure regulator type KVP opens on a rise in pressure on the inlet side, i.e. when the pressure in the evaporator exceeds the set value.

Type KVP regulates inlet pressure only. Pressure variations on the outlet side of the regulator do not affect the degree of opening as the valve is equipped with equalization bellows (6).

The bellows have an effective area corresponding to that of the valve seat neutralising any affect to the setting.


The regulator is also equipped with a damping device (9) providing protection against pulsations which can normally arise in a refrigeration system.

The damping device helps to ensure long life for the regulator without impairing regulation accuracy.

Data sheet

Evaporating Pressure Regulator, type KVP

P-band and Offset

Proportional band

The proportional band or P-band is defined as the amount of pressure required to move the valve plate from a closed to a fully open position.

Example:

If the valve is set to open at 4 bar and the valve P-band is 1.7, the valve will provide maximum capacity when the inlet pressure reaches 5.7 bar.

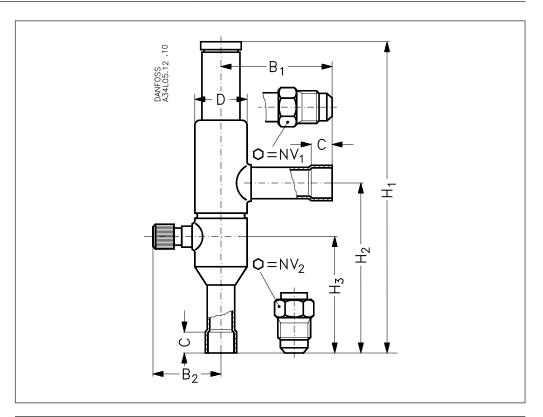
Offset

The offset is defined as the permissible pressure variation in evaporator pressure (temperature). It is calculated as the difference between the required working pressure and the minimum allowable pressure.

Danfoss

The offset is always a part of the P-band.

Example with R22:


A working temperature of 5 °C \sim 4.9 bar is required, and the temperature must not drop below 0.5 °C \sim 4.1 bar. The offset will then be 0.8 bar. When selecting a valve, be sure to correct the evaporator capacity based on the required offset.

Evaporating Pressure Regulator, type KVP

Data sheet

Dimensions [mm] and weights [kg]

Туре	Connection													
	Flare		Solder ODF		NV ₁	NV ₂	H ₁	H ₂	H₃	B ₁	B ₂	с	øD	Net weight
	[in.]	[mm]	[in.]	[mm]										weight
KVP 12	1/2	12	1/2	12	19	19	179	99	66	64	41	10	30	0.4
KVP 15	⁵ / ₈	16	⁵ / ₈	16	24	24	179	99	66	64	41	12	30	0.4
KVP 22	_	_	7/ ₈	22	24	24	179	99	66	64	41	17	30	0.4
KVP 28	_	_	1 1/8	28	24	24	259	151	103	105	48	20	43	1.0
KVP 35	_	_	1 ³ / ₈	35			259	151	103	105	48	25	43	1.0

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.